
Multi Agent Reward Analysis for Learning in Noisy Domains

Adrian K. Agogino
UCSC, NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035

adrian@email.arc.nasa.gov

Kagan Tumer
NASA Ames Research Center

Mailstop 269-4
Moffett Field, CA 94035

ktumer@mail.arc.nasa.gov

Abstract

In many multi agent learning problems, it is difficult to
determine, a priori, the agent reward structure that will
lead to good performance. This problem is particularly pro-
nounced in continuous, noisy domains ill-suited to simple
table backup schemes commonly used in TD(λ)/Q-learning.
In this paper, we present a new reward evaluation method
that allows the tradeoff between coordination among the
agents and the difficulty of the learning problem each agent
faces to be visualized. This method is independent of the
learning algorithm and is only a function of the problem do-
main and the agents’ reward structure. We then use this re-
ward efficiency visualization method to determine an effec-
tive reward without performing extensive simulations. We
test this method in both a static and a dynamic multi-rover
learning domain where the the agents have continuous state
spaces and where their actions are noisy (e.g., the agents’
movement decisions are not always carried out properly).
Our results show that in the more difficult dynamic domain,
the reward efficiency visualization method provides a two
order of magnitude speedup in selecting a good reward.
Most importantly it allows one to quickly create and ver-
ify rewards tailored to the observational limitations of the
domain.

1. Introduction

Recent advances in distributed learning methods have
addressed how to best create rewards that promote coor-
dination in a multi agent system [?, 8, 9, 11, 13]. This is
a fundamental challenge that applies to most multi agent
learning problems, but particularly to learning in dynamic
environments. Indeed, most coordination methods that per-
form well in static environments often perform poorly in dy-
namic environments??. In this paper, we present a reward
evaluation method that directly addresses this issue by ex-
plicitely visualizing the coordination properties of a reward

in both static and dynamic environments. This reward eval-
uation method is based on two important properties in multi
agent coordination:

1. how well the reward promotes coordination among
agents in different parts of a domain’s state-space; and

2. how easy it is for an agent to learn to maximize that
reward.

These reward visualization method provide the ability to
predict the reward performance in a given domain with-
out the need for lengthy learning trials. Furthermore, this
method can be used to create either new sets of coordina-
tion mechanisms or new reward structures based on the spe-
cific needs of the domain.

We explore the agent reward design and evaluation in a
continuous rover problem where a set of rovers learn to nav-
igate and collect information in an unknown environment
based on their noisy sensor inputs [2]. Reinforcement learn-
ing and credit assignment is particulary challenging in this
case because traditional table-based reinforcement learn-
ing methods such as Q-learing, TD(λ) and Sarsa learners
are ill-suited to this domain [10]. Instead, we select a di-
rect policy search method where the full control policy is
evaluated after each learning episode. Note that this domain
is not only more realistic but also significantly more diffi-
cult than previous multi-rover coordination problems where
agents learned to take discrete actions in a static grid-world
setting [11]. Therefore, having well tailored and computa-
tionally tractable agent rewards is particularly important in
this domain.

In this paper we provide evaluation and visualisation
methods for multi-agent coordination problems in noisy
domains with continuous state spaces. We discuss three
types of agent rewards that vary in how well they pro-
mote coordination and how easy it is for the agents to learn
them. A new visualization method is then used to determine
which reward is best suited in the Continuous Rover Prob-
lem. In addition, the visualization is used to provide new
agent rewards that take the rovers partial observation limi-

tations into account while retaining much of the salient fea-
tures (e.g., coordination) of the full reward. Section 2 de-
scribes the key reward properties required for evaluating
agent rewards and discusses three types of rewards. Sec-
tion 3 presents the Continuous Rover Problem, and provides
the simulation details. Section 4 presents the visualisation
results that allow the evaluation of the rewards, and Sec-
tion 5 presents the simulation results.

2. Rewards for Agent Coordination

In this work, we focus on cooperative multi-agent sys-
tems where each agenti is taking actions to maximize its
own agent rewardgi, and where the performance of the
full system is measured by the global rewardG. The sys-
tem statez is decomposed into a component that depends
on the state of agenti, denoted byzi, and a component that
does not depend on the state of agenti, denoted byz−i.
(We will use the notationz = zi + z−i to concatenate the
state vectors.) Note that though agenti may or may not in-
fluence the full statez, bothG andgi are functions ofz, the
full state of the system.

2.1. Factoredness and Learnability

There are two properties that are crucial to producing co-
operative multi agent systems in which agents acting to op-
timize their own agent rewards will also optimize the pro-
vided global reward. The first, calledfactorednessconcerns
“aligning” the agent rewards of the agents with the global
reward. For an agenti, let us define the degree of factored-
ness between the rewardsgi andG at pointz as:

Fgi
=

∑
z′ u[((gi(z)− gi(z′))(G(z)−G(z′))]∑

z′ 1
(1)

where the statesz andz′ only differ in the states of agenti,
andu[x] is the unit step function, equal to 1 ifx > 0. In-
tuitively, the degree of factoredness gives the percentage of
states in which a change in the action of agenti has the same
impact ongi andG. A high degree of factoredness means
that the agent rewardgi is aligned with the global rewardG.
As a trivial example, any system in which all the agent re-
wards equalG has a degree of factoredness of 1.

The second property, calledlearnability , measures the
dependence of a reward on the actions of a particular agent
as opposed to all the other agents. Let us first define the
point learnability of rewardgi, between statez and z′ as
the ratio of the change ingi due to a change in the states of
agenti over the change ingi due to a change in the states of
other agents:

L(gi, z, z′) =
‖gi(z)− gi(z − zi + z′i)‖
‖gi(z)− gi(z′ − z′i + zi)‖

(2)

wherez′ is an alternate to statez (e.g., in the numerator of
Eq 2, agenti’s state is changed fromz to z′, whereas in the
denominator, the state of all other agents is changed fromz
to z′). The learnability of a rewardgi is then given by:

L(gi, z) =
∑

z′ L(gi, z, z′)∑
z′ 1

(3)

Intuitively, the higher the learnability, the moregi depends
on the move of agenti, i.e., the better the associated signal-
to-noise ratio fori. Therefore, higher learnability means it
is easier fori to receive large values of its reward. Note
that both learnability and factoredness are computed local
to a particular state. Later we analyze how these properties
change through the state space.

2.2. Multi-Agent Rewards

The selection of a reward that provides the best per-
formance hinges on balancing the degree factoredness and
learnability for each agent. In general, a highly factored re-
ward will have low learnability and a highly learnable re-
ward will have low factoredness [13]. In this work, we ana-
lyze three different rewards that provide different trade-offs
between learnability and factoredness:Ti, the team game
reward (Eq. 4),Pi, the perfectly learnable reward (Eq. 5)
andDi, the difference reward (Eq. 6) given by:

Ti ≡ G(z) (4)
Pi ≡ G(zi) (5)
Di ≡ G(z)−G(z−i). (6)

Ti provides the full global reward to each agent. It is fully
factored by definition, but because each agent’s reward de-
pends on the states of all the other agents, it generally has
poor learnability, a problem that get progressively worse as
the size of the system grows.Pi provides the component of
the global reward that depends on the states of agenti. Be-
cause it does not depend on the states of other agents,Pi

is “perfectly learnable” having infinite learnability. How-
ever, depending on the domain, it may have low degree of
factoredness.Di provides rewards that have high factored-
ness, because the second term of Eq. 6 does not depend on
i’s states [13]. Furthermore,Di usually has better learnabil-
ity than doesTi, because the second term ofDi removes
some of the effects of other agents (i.e., noise) fromi’s re-
ward. While having good properties, this reward is often im-
practical to compute because it requires a lot of knowledge
aboutz to computeG(z−i). In practice either of the three
rewards may be the best choice depending on their proper-
ties in a particular domain.

3. Continuous Rover Problem

In this section, we define the “Continuous Rover Prob-
lem,” that will be used illustrate the importance of visualiza-

tion and proper reward selection in a difficult noisy, contin-
uous, multi-agent domains. In this problem, multiple rovers
try to observer points of interest (POIs) on a two dimen-
sional plane. A POI has a fixed position on the plane and
has a value associated with it. The value of the information
from observing a POI is inversely related to the distance the
rover is from the POI. In this paper the distance metric will
be the squared Euclidean norm, bounded by a minimum ob-
servation distance, d:1

δ(x, y) = min{‖x− y‖2, d2} . (7)

While any rover can observe any POI, as far as the global
reward is concerned, only the closest observation counts2.
The full system, or global reward for an episode is given by:

G =
∑

j

Vj

mini δ(Lj , Li)
, (8)

whereVj is the value of POIj, Lj is the location of POIj
andLi is the location of roveri.

At every time step, the rovers sense the world through
eight continuous sensors. From a rover’s point of view, the
world is divided up into four quadrants relative to the rover’s
orientation, with two sensors per quadrant (see Figure 1).
For each quadrant, the first sensor returns a function of the
POIs in the quadrant. Specifically the first sensor for quad-
rantq returns the sum of the values of the POIs divided by
their squared distance to the rover:

s1,q,i =
∑
j∈Iq

Vj

δ(Lj , Li)
(9)

whereIq is the set of observable POIs in quadrantq. The
second sensor returns the sum of square distances from a
rover to all the other rovers in the quadrant:

s2,q,i =
∑

i′∈Nq

1
δ(Li′ , Li,t)

(10)

whereNq is the set of rovers in quadrantq.

3.1. Simulation Set-up

With four quadrants and two sensors per quadrant, there
are a total of eight continuous inputs. This eight dimen-
sional sensor vector constitutes the state space for a rover.

1 The square Euclidean norm is appropriate for many natural phe-
nomenon, such as light and signal attenuation. However any other type
of distance metric could also be used as required by the problem do-
main. The minimum distance is included to prevent singularities when
a rover is very close to a POI

2 Similar rewards could also be made where there are many different
levels of information gain depending on the position of the rover. For
example 3-D imaging may utilize different images of the same ob-
ject, taken by two different rovers.

Rover Sensor

POI Sensor

Figure 1. Diagram of a Rover’s Sensor Inputs.
The world is broken up into four quadrants
relative to rover’s position. In each quadrant
one sensor senses points of interests, while
the other sensor senses other rovers.

At each time step the rover uses its state to compute a
two dimensional action. The action represents an x,y move-
ment relative to the rover’s location and orientation. The
mapping from state to action is done with a multi-layer-
perceptron (MLP), with 8 input units, 10 hidden units and 2
output units [6]. The MLP uses a sigmoid activation func-
tion, therefore the outputs are limited to the range(0, 1).
The actions, dx and dy, are determined from substracing0.5
from the output and multiplying by the maximum distance
the rover can move in one time step:dx = d(o1 − 0.5) and
dy = d(o2−0.5) whered is the maximum distance the rover
can move in one time step,o1 is the value of the first output
unit, ando2 is the value of the second output unit. To better
simulate the inaccuracies and imperfections of a rover op-
erating in the real world, ten percent noise is added to each
action. The MLP for a rover is chosen through local search
[5], where the weights of the MLP is modified and selected
with preset probabilities. Note, this is a form of direct pol-
icy search, where the MLPs are the policy [3].

In these simulations, there are thirty rovers, and each
episode consists of 15 time steps. The world is 100 units
long and 115 units wide. All of the rovers start the episode
near the center (60 units from the left boundary and 50 units
from the top boundary). The maximum distance the rovers
can move in one direction during a time step,d, is set to 10.
The minimum distance, d, used to computeδ is equal to 5.
System performance is measured by how well the rovers are
able to maximize the sum of global rewards for an episode,
though each rover is trying to maximize its own agent re-
ward, discussed below.

3.2. Rover Rewards

In this paper three different types of agent rewards are
tested in the Rover Problem. The first reward is the team
game reward (Ti) where the agent reward is set to the global
reward given in equation 8. The second reward is the “per-
fectly learnable” reward (Pi):

Pi =
∑

j

Vj

δ(Lj , Li)
(11)

Note thatPi is equivalent toTi when there is only one rover.
It also has infinite learnability as defined in Section 2 (de-
nominator is equal to zero since forPi g(z

′ − z′i + zi) =
gi(z)). However,Pi is not factored. IntuitivelyPi andTi of-
fer opposite benefits, sinceTi is by definition factored, but
has poor learnability. The third reward is the difference re-
ward. It does not have as high learnability asPi, but is still
factored likeTi . For the rover problem, the difference re-
ward,Di, is defined as:

Di =
∑

j

Vj

mini′ δ(Lj , Li′)
−

∑
j

Vj

mini′ 6=i δ(Lj , Li′)

=
∑

j

Ij,i(z)
Vj

δ(Lj , Li)

whereIj,i(z) is an indicator function, returning one if and
only if POI j is the closest rover toLj . The second term of
theDi is equal to the value of all the information collected
if rover i is not in the system. Note that in practice it may
be difficult to compute this reward since each rover needs
to know the locations of all of the other rovers. It may even
be more difficult to compute than the team game reward,Ti,
sinceTi is the same for all the rovers. In many casesTi can
be computed once and then broadcast to all the agents.

3.3. Static and Dynamic Environments

In the static environment the set of POIs remained fixed
for all learning episodes. The POI distributions ranged from
randomly distributed across the state to checkerboard pat-
terns of uniform POIs. The results and insights gained from
visualization were qualitatively similar in all cases. To illus-
trate the impact of visualization, we selected the POI dis-
tribution depicted in Figure 2, which required a moderate
amount of coordination. The 15 POIs to the left have value
3.0, and the lone POI to the right has of 10.0.

For the dynamic environment, the POI distribution
changed every 15 time steps, and the rovers faced a differ-
ent configuration at each episode. In each episode, there
were one hundred POIs of equal value, distributed ran-
domly within a 70 by 70 unit squared centered on the
rovers’ starting location. In the static environment, the

High Valued
POI

Low Valued
POIs

Rovers

Figure 2. Diagram of Static Environment.
Points of interests are at fixed locations for
every episode.

rovers learned specific control policies for a given con-
figuration of POIs. This type of learning is most use-
ful when the rovers learn on a simulated environment that
closely matches the environment in which they will be de-
ployed. However, in general it is more desirable for the
rovers to directly learn the sensor/action mapping inde-
pendently from the specific POI configuration, so that they
can generalize to POI configurations that may be signifi-
cantly different than the ones in which they were trained.
The dynamic environment experiment tests the rovers’ abil-
ity to generalize in constantly changing environmental
conditions.

This type of problem is common in real world domains,
where the rovers typically learn in a simulator and later
have to apply their learning to the environment in which
they are deployed. Note that this is a fundamentally diffi-
cult learning problem because: 1) the environment changes
every episode, 2) noise is added to the actions of the rovers,
3) the state space is continuous, and 4) thirty rovers must co-
ordinate. Therefore, the selection of the agent reward is crit-
ical to success and many rewards that can be used in more
benign domains (e.g., grid world rovers) are unlikely to pro-
vide satisfactory results.

4. Reward Visualization

Visualization is an important part of understanding the
inner workings of many systems, but particularly those of
learning systems [7, 4, 12, 1]. This paper focuses on visu-
alizing reward properties to aid in both agent reward eval-
uation and design. To analyze the rewards in a specific do-
main, we plot the learnability and factoredness of a reward
measured at a set of states in the domain. This visualiza-
tion helps determine which of the many possible rewards
one expects to perform well in a particular domains.

Pi Di (PO) Di Ti

Fa
ct

or
ed

ne
ss

Le
ar

na
bi

lit
y

2

3

2

11

More POIs

M
or

e R
ov

er
s

Figure 3. Factoredness and Learnability Visualization in Static Environment. First row shows fac-
toredness of four rewards and second row shows their learnability. The visualization is a projection
of an agent’s state space, with increasing x values corresponding to states closer to POIs and in-
creasing y values corresponding to states where the agent is closer to other agents. Pi has low fac-
toredness and is anti-factored for much of region 1. Di under partial observability (Di(PO)) is much
more factored. Di(PO) has higher learnability than Di, especially in region 2. Ti generally has low
learnability, but is sufficient in region 3, corresponding to regions close to POIs.

The analysis starts by recording the states observed by
agents taking a random set of actions for a fixed number of
episodes. Then for each reward, we compute the learnabil-
ity and factoredness by sampling Equations 1-3. The learn-
ability and factoredness values for each state are then pro-
jected onto a two-dimensional plane, using a domain depen-
dent projection. The projection is then broken up into fixed
sized squares and all the values within a square are aver-
aged.

In a learnability visualization, points where an agent’s
action influences its reward more than the actions of other
agents are represented with a “+” sysmbol. The lighter the
“+” symbol, the more an agent influences its own reward.
Points where an agent’s actions influence its reward less
than the actions of other agents are represented with a “-
” symbol. The lighter the “-” symbol, the less an agent
influences its reward. In factoredness visualization, points
where an agent’s reward is aligned with the global reward
more often than random are represented with a “+” sym-
bol. The lighter the “+” symbol the more factored the re-
ward is. Points where an agent’s reward is aligned with the
global reward less often than random (anti-aligned) are rep-

resented with a “-” symbol. The lighter the “-” symbol the
more anti-factored the reward is.

In this domain, the projection axis are formed using the
eight sensor values used by the rovers. The x axis of the
projection corresponds to the sum of the four sensor values
corresponding to POI distance, and the y axis corresponds
to the sum of the four sensor values corresponding to other
rover distance. Therefore values at the left side of the vi-
sualization correspond to states where a rover is far away
from the POIs, and values at the right side of the visualiza-
tion correspond to states where the rover is close to POIs.
Similarly values at the bottom of a visualization correspond
to states where a rover is not close to any other rover, and ar-
eas towards the top of the visualization correspond to states
where the rover is close to other rovers.

4.1. Visualization in Static Environments

Figure 3 shows the learnability and factoredness visual-
izations for the the static environment.Pi is highly factored
in some parts of the state space, particularly the lower right
corner. That space corresponds to conditions where there

are many POIs but few other rovers in the rover’s vicinity.
It is not surprising that in such conditions where coordina-
tion is not relevant this reward provides the right incentives.
It is important to note thatPi has high learnability across the
board, a result that is expected from how the reward is con-
structed. WhilePi has high learnability across the board,
and is therefore easy for the agents to learn, this visualiza-
tion implies that in many states it results in the agent learn-
ing to take the wrong actions. BecausePi has better fac-
toredness than random, for most states, we expect agents
usingPi in this environment to reach a reasonable level of
proficiency.

The situation is almost entirely reversed forTi in this
environement. It is by definition fully factored (except for
states that have not been sampled, which show up as black
in Figure 3), but has low learnability almost across the
board.Ti has good learnability only on the right side of
the visualization, corresponding to states where the rover
is close to the POIs. This is an important part of the state
space so we expect that agents usingTi to learn in this do-
main, though learning will be slow since the agents receive
proper reinforcement signals only after they stumble upon
regions with POIs.

Di on the other hand is both fully factored and highly
learnable. However, to computeDi, a rover needs to be able
to observe all of the other rovers which may be impractical
in many domains (note,Ti also requires this). Instead we
compute the partially observableDi, where only the rovers
within a radius equal to the maximum distance a rover can
move in one time step are observed. This is a severe restric-
tion that forces the agents to focus on less than 3% of the
state space at any time in search of other rovers. While this
reward is no longer fully factored, the factoredness visual-
ization (labeledDi(PO)) shows that the reward is still rea-
sonably factored. In addition if we look at the right side
of the learnability visualization forDi andDi(PO) (verti-
cal rectangle marked2 in Figure 3), we see thatDi(PO) is
more learnable in this part of the state space. Considering
this part of the state corresponds the important area where a
rover is close to a POI, we expect agents usingDi(PO) to
perform even better than agents usingDi in this static envi-
ronment domain.

For the static domain, we can gain additional insight into
the differences between the rewards by displaying the fac-
toredness visualization projected directly on thex, y do-
main in which the rovers move. This shows how the re-
wards map to actions directly taken by the rovers. Figure
4 shows the factoredness forDi(PO) andPi (on this pro-
jection,Ti andDi are fully factored, meaning each square
is a light “+”). Note that around the POIs, both rewards are
factored. However, there is an anti-factored boundary for
Pi between the two regions. That means that agents are re-
stricted to the right or left hand side of thex, y grid, and will

Pi Di (PO)

Figure 4. Factoredness Projected onto Do-
main Coordinates. Factoredness of Pi and
Di(PO) is projected onto the x,y coordinates
of the domain environment instead of onto
the feature space used by rovers. “+” repre-
sents factoredness and “-” represents anti-
factoredness. Pi has an anti-factored bound-
ary preventing agents from moving from one
region to the other.

not cross that boundary if doing so would benefit the global
reward. This means the performance ofPi will be partic-
ularly sensitive to the initial random actions taken by the
rovers. Notice that though not highly factored in that region,
Di(PO) has two “bridges” to cross this region and further-
more is lightly factored rather than anti-factored in the rest
of that region. This implies thatDi(PO) will not have fac-
toredness problems in this domain.

4.2. Visualization in Dynamic Environments

Figure 5 shows the factoredness and learnability visual-
izations for dynamic environments. They show that in this
more difficult environment, neitherPi norTi are acceptable.
The factoredness deficiencies ofPi are amplified in this en-
vironment as are the learnability defficiencies ofTi. In fact
the learnability is so low that there is reason to expectTi to
perform marginally betten than a random algorithm.Pi is
only consistently factored in the bottom left part of the vi-
sualizations, corresponding to unimportant locations where
the rover is not close to any POIs or close to any other rover.
In fact, in more important areas of the state space,Pi is of-
ten anti-factored, leading one to expect agents usingPi to
perform very poorly in this environment.

In contract,Di is both highly learnable and highly fac-
tored in this domain. In fact, there is little difference be-
tween the learnability/factoredness charts ofDi in this dif-
ficult domain and in the static domain. Given thatDi is fully
factored we would expect rovers usingDi to perform very
well. However, againDi is difficult to compute in practice,
as it requires a rover to know the locations of all of the other

Pi Di (PO) Di Ti

Fa
ct

or
ed

ne
ss

Le
ar

na
bi

lit
y

More POIs

M
or

e R
ov

er
s

Figure 5. Factoredness and Learnability Visualization in Dynamic Environments. First row shows fac-
toredness the four rewards and second row shows their learnability. The visualization is a projec-
tion of an agent’s state space. The visualizations show that Pi has very low factoredness and Ti has
very low learnability. Di(PO) (computed with partial observability) still has high factoredness.

rovers. As in the static domain we can computeDi(PO)
where the rover can only observe other rovers within a ra-
dius equal to the maximum distance it can move at one
time step. Though not as high as that ofDi, the factored-
ness ofDi(PO) is still consistently high. Therefore we ex-
pect rovers usingDi(PO) to significantly outperform both
Ti andPi.

5. Reward Performance

In this section we show the results from a set of experi-
ments in both the static environment and dynamic environ-
ments to evaluate the effectiveness of the rewards in these
domains. The experiments confirm the expectation obtained
from the factoredness and learnability visualizations.

Figure 6 shows results from the static environment. The
rovers usingPi learned quickly, but did not converge to
good solutions. This is consistent with the high learnabil-
ity/low factoredness properties ofPi that were apparent in
the visualizations. In contrast agents usingTi were able
to keep improving their performance through learning, and
were able to surpass the performance ofPi. However as pre-
dicted from the learnability visualization, these rovers learn
slowly, soTi may be a poor choice of reward in quick learn-
ing is needed. As expected, rovers usingDi with full ob-

servability performed very well, sinceDi is both highly
learnable and fully factored. More interestingly, the rovers
using Di(PO) performed even better thoughDi(PO) is
not fully factored. This confirms that the gains in learnabil-
ity more than offset the slight loss in factoredness shown in
the visualizations. Note this is remarkable, sinceDi(PO)
is in fact significantly easier to compute thanDi.

 260

 280

 300

 320

 340

 360

 380

 0 20 40 60 80 100 120 140 160 180 200

Su
m

Gl
ob

al
Re

wa
rd

 A
ch

iev
ed

Number of Episodes

D PO
D
T
P

(Random)

Figure 6. System performance in static envi-
ronments. As predicted by the visualizations,
Agents using Pi have mediocre performance,
agents Ti learn slowly and, Di(PO) retains
enough factoredness to perform well.

Figure 7 shows that rovers usingTi or Pi per-
form very poorly in the dynamic environments as pre-
dicted from the learnability and factoredness visualiza-
tions. The performance of rovers usingPi actually de-
clines with learning, highlighting the fact thatPi leads
the rovers to learn thewrong thing. This results con-
firms the intuition that highly learnable but poorly factored
rewards can in fact be worse than random actions in diffi-
cult environments requiring coordination. Rovers usingDi

with full observability performed the best and rovers us-
ing Di(PO) performed well. In this more difficult do-
main, Di(PO) did not have significant learnability gains
over Di, and therefore, did not overcome the drop in fac-
toredness. TheDi(PO) results are still impressive though
as they are obtained by collecting only about 1% of the in-
formation about the location of others rovers compared to
Di.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0 50 100 150 200

Su
m

Gl
ob

al
Re

wa
rd

 A
ch

iev
ed

Number of Episodes

D
D PO

T
P

(Random)

Figure 7. Results in Dynamic Environments.
As predicted from the visualization, agents
using Ti perform poorly, agents using Pi per-
form even worse as they learn the wrong ac-
tions, agents using Di perform the best, and
agents using Di(PO) perform quite well.

6. Conclusion

The effectiveness of agent rewards in promoting coordi-
nation in a complex multi-agent system is heavily domain
dependent. In many cases, rewards or coordination mecha-
nisms that work well in static environments perform poorly
in dynamic environments. This paper shows that the visu-
alization of two critical reward properties can dramatically
accelerate and reduce the difficulties associated with choos-
ing choose good agent rewards and coordinatin mechanism
in difficult multi-agent problems. In addition based the re-
wards can be modified to meet the computational and infor-
mational demands of a domain and then quickly validated.
We demonstrate this capability by predicting the perfor-
mance characteristics of a set of rewards in a noisy, contin-
uous multi-rover domain, and show that some rewards that

do work reasonably well in the static environment fall apart
in the dynamic environment. This visualization method is
one to orders of magnitude faster than running a full learn-
ing simulation to validate the agent reward. We used this vi-
sualization method to design and validate a reward based
on a computationally expensive reward. This reward only
needed less than3% of the observational capability as the
full reward, but as predicted by the visualization performed
nearly as well as the full reward in the dynamic environ-
ment.

References

[1] A. Agogino, C. Martin, and J. Ghosh. Visualization of ra-
dial basis function networks. InProceedings of Interna-
tional Joint Conference on Neural Networks, Washington,
DC, 1999.

[2] A. Agogino and K. Tumer. Efficient evaluation functions for
multi-rover systems. InProceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2004), pages
1–12, Seattle, WA, 2004.

[3] L. Baird and A. Moore. Gradient descent for general rein-
forcement learning. InAdvances in Neural Information Pro-
cessing Systems (NIPS), pages 968–974, Cambridge, MA,
1999. The MIT Press.

[4] H. Bishof, A. Pinz, and W. G. Kropatsch. Visualization meth-
ods for neural networks. In11th International Conference
on Pattern Recognition, pages 581–585, The Hague, Nether-
lands, 1992.

[5] C. M. Bishop.Neural Networks for Pattern Recognition. Ox-
ford University Press, New York, 1995.

[6] S. Haykin. Neural Networks A Comprehensive Foundation.
Macmillan College Publishing Company, New York, 1994.

[7] G. Hinton. Connectionist learning procedures.Artificial In-
telligence, 40:185–234, 1986.

[8] J. Hu and M. P. Wellman. Multiagent reinforcement learn-
ing: Theoretical framework and an algorithm. InProceed-
ings of the Fifteenth International Conference on Machine
Learning, pages 242–250, June 1998.

[9] M. J. Mataric. Coordination and learning in multi-robot sys-
tems. InIEEE Intelligent Systems, pages 6–8, March 1998.

[10] R. S. Sutton and A. G. Barto.Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[11] K. Tumer, A. Agogino, and D. Wolpert. Learning sequences
of actions in collectives of autonomous agents. InPro-
ceedings of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 378–385,
Bologna, Italy, July 2002.

[12] J. Wejchert and G. Tesauro. Visualizing processes in neu-
ral networks. IBM Journal of Research and Development,
35:244–253, 1991.

[13] D. H. Wolpert and K. Tumer. Optimal payoff functions
for members of collectives.Advances in Complex Systems,
4(2/3):265–279, 2001.

